Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The black holes in the Event Horizon Telescope sources Messier 87* and Sagittarius A* (Sgr A*) are embedded in a hot, collisionless plasma that is fully described in kinetic theory yet is usually modeled as an ideal, magnetized fluid. In this Letter, we present results from a new set of weakly collisional fluid simulations in which leading-order kinetic effects are modeled as viscosity and heat conduction. Consistent with earlier, lower-resolution studies, we find that overall flow dynamics remain very similar between ideal and nonideal models. For the first time, we synthesize images and spectra of Sgr A* from weakly collisional models—assuming an isotropic, thermal population of electrons—and find that these remain largely indistinguishable from ideal fluid predictions. However, most weakly collisional models exhibit lower light-curve variability, with all magnetically dominated models showing a small but systematic decrease in variability.more » « less
-
Abstract General relativistic magnetohydrodynamics (GRMHD) simulations are an indispensable tool in studying accretion onto compact objects. The Event Horizon Telescope (EHT) frequently uses libraries of ideal GRMHD simulations to interpret polarimetric, event-horizon-scale observations of supermassive black holes at the centers of galaxies. In this work, we present a library of 10 nonradiative, ideal GRMHD simulations that were utilized by the EHT Collaboration in their analysis of Sagittarius A*. The parameter survey explores both low (SANE) and high (MAD) magnetization states across five black hole spinsa* = −15/16, −1/2, 0, +1/2, +15/16 where each simulation was run out to 30,000GM/c−3. We find the angular momentum and energy flux in SANE simulations closely matches the thin-disk value, with minor deviations in prograde models due to fluid forces. This leads to spin equilibrium arounda* ∼ 0.94, consistent with previous studies. We study the flow of conserved quantities in our simulations and find mass, angular momentum, and energy transport in SANE accretion flows to be primarily inward and fluid dominated. MAD models produce powerful jets with outflow efficiency >1 fora* = + 0.94, leading to black hole spin-down in prograde cases. We observe outward directed energy and angular momentum fluxes on the horizon, as expected for the Blandford–Znajek mechanism. MAD accretion flows are sub-Keplerian and exhibit greater variability than their SANE counterpart. They are also hotter than SANE disks withinr ≲ 10GM/c−2. This study is accompanied by a public release of simulation data athttp://thz.astro.illinois.edu/.more » « less
-
Abstract The Event Horizon Telescope (EHT) has produced images of M87* and Sagittarius A*, and will soon produce time sequences of images, or movies. In anticipation of this, we describe a technique to measure the rotation rate, or pattern speed Ωp, from movies using an autocorrelation technique. We validate the technique on Gaussian random field models with a known rotation rate and apply it to a library of synthetic images of Sgr A* based on general relativistic magnetohydrodynamics simulations. We predict that EHT movies will have Ωp≈ 1° perGMc−3, which is of order 15% of the Keplerian orbital frequency in the emitting region. We can plausibly attribute the slow rotation seen in our models to the pattern speed of inward-propagating spiral shocks. We also find that Ωpdepends strongly on inclination. Application of this technique will enable us to compare future EHT movies with the clockwise rotation of Sgr A* seen in near-infrared flares by GRAVITY. Pattern speed analysis of future EHT observations of M87* and Sgr A* may also provide novel constraints on black hole inclination and spin, as well as an independent measurement of black hole mass.more » « less
-
Abstract The Event Horizon Telescope (EHT) has released analyses of reconstructed images of horizon-scale millimeter emission near the supermassive black hole at the center of the M87 galaxy. Parts of the analyses made use of a large library of synthetic black hole images and spectra, which were produced using numerical general relativistic magnetohydrodynamics fluid simulations and polarized ray tracing. In this article, we describe the PATOKA pipeline, which was used to generate the Illinois contribution to the EHT simulation library. We begin by describing the relevant accretion systems and radiative processes. We then describe the details of the three numerical codes we use, iharm , ipole , and igrmonty , paying particular attention to differences between the current generation of the codes and the originally published versions. Finally, we provide a brief overview of simulated data as produced by PATOKA and conclude with a discussion of limitations and future directions.more » « less
-
We report three epochs of polarized images of M87* at 230 GHz using data from the Event Horizon Telescope (EHT) taken in 2017, 2018, and 2021. The baseline coverage of the 2021 observations is significantly improved through the addition of two new EHT stations: the 12 m Kitt Peak Telescope and the Northern Extended Millimetre Array (NOEMA). All observations result in images dominated by a bright, asymmetric ring with a persistent diameter of 43.9 ± 0.6 μas, consistent with expectations for lensed synchrotron emission encircling the apparent shadow of a supermassive black hole. We find that the total intensity and linear polarization of M87* vary significantly across the three epochs. Specifically, the azimuthal brightness distribution of the total intensity images varies from year to year, as expected for a stochastic accretion flow. However, despite a gamma-ray flare erupting in M87 quasi-contemporaneously to the 2018 observations, the 2018 and 2021 images look remarkably similar. The resolved linear polarization fractions in 2018 and 2021 peak at ∼5%, compared to ∼15% in 2017. The spiral polarization pattern on the ring also varies from year to year, including a change in the electric vector position angle helicity in 2021 that could reflect changes in the magnetized accretion flow or an external Faraday screen. The improved 2021 coverage also provides the first EHT constraints on jet emission outside the ring, on scales of ≲1 mas. Overall, these observations provide strong proof of the reliability of the EHT images and probe the dynamic properties of the horizon-scale accretion flow surrounding M87*.more » « less
-
Aims.We investigated the polarization and Faraday properties of Messier 87 (M87) and seven other radio-loud active galactic nuclei (AGNs) atλ0.87 mm (345 GHz) using the Atacama Large Millimeter/submillimeter Array (ALMA). Our goal was to characterize the linear polarization (LP) fractions, measure Faraday rotation measures (RMs), and examine the magnetic field structures in the emission regions of these AGNs. Methods.We conducted full-polarization observations as part of the ALMA Band 7 very long baseline interferometry (VLBI) commissioning during the April 2021 Event Horizon Telescope (EHT) campaign. We analyzed the LP fractions and RMs to assess the nature of Faraday screens and magnetic fields in the submillimeter emission regions. Results.We find LP fractions between 1% and 17% and RMs exceeding 105 rad m−2, which are 1–2 orders of magnitude higher than typically observed at longer wavelengths (λ>3 mm). This suggests denser Faraday screens or stronger magnetic fields. Additionally, we present the first submillimeter polarized images of the M87 jet and the observed AGNs, revealing RM gradients and sign reversals in the M87 jet indicative of a kiloparsec-scale helical magnetic field structure. Conclusions.Our results provide essential constraints for calibrating, analyzing, and interpreting VLBI data from the EHT at 345 GHz, representing a critical step toward submillimeter VLBI imaging.more » « less
-
We investigate the origin of the elliptical ring structure observed in the images of the supermassive black hole M87*, aiming to disentangle contributions from gravitational, astrophysical, and imaging effects. Leveraging the enhanced capabilities of the Event Horizon Telescope (EHT)'s 2018 array, including improved (u,v)-coverage from the Greenland Telescope, we measured the ring's ellipticity using five independent imaging methods, obtaining a consistent average value ofτ = 0.08−0.02+0.03with a position angle ofξ = 50.1−7.6+6.2 degrees. To interpret this measurement, we compared it to general relativistic magnetohydrodynamic (GRMHD) simulations spanning a wide range of physical parameters including the thermal or nonthermal electron distribution function, spins, and ion-to-electron temperature ratios in both low- and high-density regions. We find no statistically significant correlation between spin and ellipticity in GRMHD images. Instead, we identify a correlation between ellipticity and the fraction of non-ring emission, particularly in nonthermal models and models with higher jet emission. These results indicate that the ellipticity measured from the M87*emission structure is consistent with that expected from simulations of turbulent accretion flows around black holes, where it is dominated by astrophysical effects rather than gravitational ones. Future high-resolution imaging, including space very long baseline interferometry and long-term monitoring, will be essential to isolate gravitational signatures from astrophysical effects.more » « less
-
Context.The 2017 observing campaign of the Event Horizon Telescope (EHT) delivered the first very long baseline interferometry (VLBI) images at the observing frequency of 230 GHz, leading to a number of unique studies on black holes and relativistic jets from active galactic nuclei (AGN). In total, eighteen sources were observed, including the main science targets, Sgr A* and M 87, and various calibrators. Sixteen sources were AGN. Aims.We investigated the morphology of the sixteen AGN in the EHT 2017 data set, focusing on the properties of the VLBI cores: size, flux density, and brightness temperature. We studied their dependence on the observing frequency in order to compare it with the Blandford-Königl (BK) jet model. In particular, we aimed to study the signatures of jet acceleration and magnetic energy conversion. Methods.We modeled the source structure of seven AGN in the EHT 2017 data set using linearly polarized circular Gaussian components (1749+096, 1055+018, BL Lac, J0132–1654, J0006–0623, CTA 102, and 3C 454.3) and collected results for the other nine AGN from dedicated EHT publications, complemented by lower frequency data in the 2–86 GHz range. Combining these data into a multifrequency EHT+ data set, we studied the dependences of the VLBI core component flux density, size, and brightness temperature on the frequency measured in the AGN host frame (and hence on the distance from the central black hole), characterizing them with power law fits. We compared the observations with the BK jet model and estimated the magnetic field strength dependence on the distance from the central black hole. Results.Our observations spanning event horizon to parsec scales indicate a deviation from the standard BK model, particularly in the decrease of the brightness temperature with the observing frequency. Only some of the discrepancies may be alleviated by tweaking the model parameters or the jet collimation profile. Either bulk acceleration of the jet material, energy transfer from the magnetic field to the particles, or both are required to explain the observations. For our sample, we estimate a general radial dependence of the Doppler factorδ ∝ r≤0.5. This interpretation is consistent with a magnetically accelerated sub-parsec jet. We also estimate a steep decrease of the magnetic field strength with radiusB ∝ r−3, hinting at jet acceleration or efficient magnetic energy dissipation.more » « less
-
The Event Horizon Telescope (EHT) observation of M87∗in 2018 has revealed a ring with a diameter that is consistent with the 2017 observation. The brightest part of the ring is shifted to the southwest from the southeast. In this paper, we provide theoretical interpretations for the multi-epoch EHT observations for M87∗by comparing a new general relativistic magnetohydrodynamics model image library with the EHT observations for M87∗in both 2017 and 2018. The model images include aligned and tilted accretion with parameterized thermal and nonthermal synchrotron emission properties. The 2018 observation again shows that the spin vector of the M87∗supermassive black hole is pointed away from Earth. A shift of the brightest part of the ring during the multi-epoch observations can naturally be explained by the turbulent nature of black hole accretion, which is supported by the fact that the more turbulent retrograde models can explain the multi-epoch observations better than the prograde models. The EHT data are inconsistent with the tilted models in our model image library. Assuming that the black hole spin axis and its large-scale jet direction are roughly aligned, we expect the brightest part of the ring to be most commonly observed 90 deg clockwise from the forward jet. This prediction can be statistically tested through future observations.more » « less
An official website of the United States government
